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Abstract 
The thermal vibrations of beryllium metal were 
determined directly from the nuclear densities 
obtained by the maximum-entropy method (MEM) 
using neutron single-crystal data. A high-resolution 
nuclear density distribution of beryllium was 
obtained by applying the MEM to the 48 structure 
factors with sin0/a < 1.41 ~ -  l from a previous study 
[Larsen, Lehmann & Merisalo (1980). Acta Cryst. 
A36, 159-163], which showed small but significant 
cubic anharmonicity in beryllium by least-squares 
refinement of the structure factors. In the present 
study, quartic as well as cubic anharmonicities are 
clearly visible in the MEM nuclear density. In order 
to determine anharmonic thermal-vibration param- 
eters, a three-dimensional function was fitted to the 
MEM nuclear density around the atom site. The 
one-particle potential was used to model the thermal 
vibrations up to quartic terms. The least-squares-fit 
values were y = - 0 . 3 0 6  eV A -3 for the third- and 
a40 = - 1.02, f12o = 2.95 and Y0o = - 3.28 eV A-4 for 
the fourth-order anharmonic parameters. Thus, the 
atomic potential in the basal plane is hardened 
against the bipyramidal space around the tetrahedral 
holes of the hexagonal-close-packed structure. It is 
softened towards the center of the octahedral voids. 
Least-squares refinement of the MEM nuclear den- 
sity gives a standard deviation of about 5 for the last 
digit of the anharmonic parameters. However, there 
is added uncertainty in the parameters because of the 
relationship of the reliability of the MEM density 
distribution to the standard deviations of the meas- 
ured intensities. Judging from previous studies of the 
thermal parameters for beryllium based on least- 
squares refinement of observed structure factors, it is 
estimated that values determined here for the 
anharmonic parameters are reliable to the first digit 
after the decimal point. 
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1. Introduction 
The maximum-entropy method (MEM) yields a 
high-resolution density distribution from even a 
limited number of diffraction data, without the use 
of a structural model (Sakata & Sato, 1990). Since 
X-rays are diffracted by electrons, M EM analysis of 
X-ray data can provide the electron-density distribu- 
tion. Different aspects of the bonding nature in the 
crystalline state have been displayed in such MEM 
investigations of the real-space electronic structure 
for several substances, such as silicon (Sakata & 
Sato, 1990), CeO2 (Sakata, Mori, Kumazawa, 
Takata & Toraya, 1990), TiO2 (Sakata, Uno, Takata 
& Mori, 1992), ice (Ih) (Sakata, Takata, Oshizumi, 
Goto & Hondoh, 1992), CaF2 and TiO2 (Sakata, 
Takata, Kubota, Uno, Kumazawa & Howard, 1992), 
LiF (Takata, Yamada, Kubota & Sakata, 1992) and 
beryllium (Takata, Kubota & Sakata, 1993). 

For non-magnetic materials, neutrons are pre- 
dominantly diffracted by the atomic nuclei. MEM 
analysis of neutron diffraction data therefore yields 
the nuclear-density distribution, which is equivalent 
to the point-nuclei distribution smeared by the 
atomic thermal motions, that is, the thermal 
smearing function. It is now possible to determine 
the thermal smearing function even in cases of 
negative scattering length (Sakata, Uno, Takata & 
Howard, 1993). Thus, MEM analysis of neutron 
diffraction data should enable us to investigate ther- 
mal vibrational features directly in real space for any 
crystalline material without using a structural model. 
The present study examines the capability of direct 
investigation of atomic thermal vibrations via the 
MEM nuclear-density distribution. 

A conventional approach to describing atomic 
thermal motion is to assume that the vibrations are 
determined by an effective one-particle potential 
(OPP), which is expanded according to the atomic 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 



TAKATA, SAKATA, KUMAZAWA, LARSEN AND IVERSEN 331 

site symmetry. The corresponding atomic thermal 
smearing function of real space and the Debye- 
Waller factor of reciprocal space can be parame- 
trized in terms of the OPP model. Conventionally, 
the parameters of the OPP model are determined by 
least-squares fitting of the Debye-Waller factor to 
X-ray or neutron structure-factor data in reciprocal 
space. In the present study, the parameters are 
determined by least-squares fitting of the thermal 
smearing function to the MEM nuclear-density dis- 
tribution in real space. 

Beryllium is used as a test case. Beryllium metal is 
very hard and brittle, with a Debye temperature of 
1150 K and small thermal vibrations. The mean- 
square atomic displacement and antisymmetric 
atomic vibrations in it at room temperature were 
determined from good single-crystal short- 
wavelength neutron data of modest extinction by a 
conventional analysis (Larsen, Lehmann & Merisalo, 
1980). It was found to have a small but significant 
cubic anharmonic thermal-motion component even 
at room temperature. The main interest of the 
present study is to understand how far MEM analy- 
sis can reveal the existence of anharmonic motion 
using the same neutron structure-factor data. 

2. The MEM analysis 

In the previous study (Larsen, Lehmann & Merisalo, 
1980), two sets of neutron diffraction data for beryll- 
ium were collected at 295 K from two single crystals 
of volumes 8 and 27 mm 3 with wavelengths of 0.525 
and 0.425/~, respectively. Although the degree of 
extinction was quite different for the two crystals, the 
mean-square displacements determined from the two 
sets of data using full-matrix least-squares refinement 
of structure factors were almost identical. The 
smallest values of inverse extinction-correction fac- 
tors were 0.94 and 0.49 for the crystals of volumes 8 
and 27 mm 3, respectively. Ideally extinction-free data 
is suitable for MEM analysis (Sakato & Sato, 1990). 
Hence, the former set of data was used for the 
present MEM analysis. Only the 48 lower-angle 
reflections up to sin0/A < 1.41 A-~ are used in the 
MEM analysis to avoid most of the added 
uncertainty coming from the correction for thermal 
diffuse scattering in the high-order reflections. 

Details of the procedure used to obtain the MEM 
density distributions are given by Sakato & Sato 
(1990). Their MEM algorithm is based on the for- 
malism of Collins (1982). The MEM analysis was 
carried out with the computer program MEED 
(Kumazawa, Kubota, Takata, Sakata & Ishibashi, 
1993). In the present analysis, the unit cell was 
divided into 120 × 120 × 120 pixels to ensure good 
spatial resolution. The unit pixel size becomes 0.019 
x 0.019 × 0.030 A. The total computing time was 

Table 1. The list of  Fobs from a neutron single-crystal 
diffraction experiment on beryllium (Larsen, Lehmann 
& Merisalo, 1980) and the corresponding structure 
factors, FMEM, calculated from the M E M  nuclear- 

density distribution shown in Fig. 1 

H K L Fobs FMEM 

0 0 2 -- 1.51 (3) -- ! .46  
1 0 1 - 1.30 (2) - 1.25 
1 0 2 0 .738 (9) 0 .713 
I 0 3 1.22 (2) 1.18 
1 1 2 - 1.37 (2) - 1.34 
2 0 I 1.16 (2) 1.15 
0 0 4 1.35 (2) 1.34 
2 0 2 0 .676 (9) 0 .657 
1 0 4 - 0 .653 (9) - 0 .649 
2 0 3 - 1.11 (2) - 1.09 
2 1 ! - 1.07 (1) - 1.06 
1 1 4 1.24 (2) 1.23 
2 1 2 0 .612 (7) 0 .602 
1 0 5 - 1.05 (1) - 1.05 
2 0 4 - 0 .605(7)  - 0 .600 
2 1 3 1.01 (1) i . 00  
3 0 2 - 1.15 (1) - 1.14 
0 0 6 - 1.15 (2) - 1.15 
2 0 5 0.97 (1) 0 .97 
2 1 4 - 0 .556 (8) - 0 .550 
1 0 6 0 .560 (8) 0 .559 
2 2 2 - 1.04 (2) - 1.05 
3 1 1 0.88 (2) 0 .90 
3 0 4 1.04 (2) 1.04 
1 1 6 - 1.05 (2) - 1.06 
3 ! 2 0 .52 (1) 0.51 
2 1 5 - 0 .89 (2) - 0 .89  
2 0 6 0.51 (1) 0 .52  
3 1 3 - 0 .85 (2) - 0 .86  
1 0 7 0.87 (2) 0 .88 
4 0 I - 0 .82 (2) - 0 .84  
2 2 4 0 .94 (2) 0 .96  
4 0 2 0 .46 (1) 0 .47  
3 1 4 - 0 . 4 7  (1) - 0 . 4 7  
2 1 6 0.48 (1) 0.48 
4 0 3 0.78 (2) 0 .79 
2 0 7 - 0 .80 (2) - 0.81 
3 2 1 - 0.75 (2) - 0 .77 
0 0 8 0.92 (3) 0 .93 
3 0 6 - 0 .89 (3) - 0 .90  
3 2 2 0.42 (1) 0 .43 
1 0 8 - 0 . 4 4  (1) - 0 . 4 5  
3 1 5 0 .74 (2) 0 .76 
4 0 4 - 0 .42 ( i )  - 0 .43 
3 2 3 0.71 (2) 0 .73 
2 I 7 0 .73 (2) 0 .75 
4 I 2 - 0 .80 (3) - 0.83 
1 l 8 0.83 (3) 0 .86  

727 s for 10 892 iterations with a FACOM VP2600 
vector computer. The observed structure factors with 
their standard deviations and the derived structure 
factors obtained through the MEM procedure, 
FMEM, are listed in Table 1. 

3. The MEM nuclear density and the anharmonicities 
of beryllium 

Beryllium metal has a hexagonal-close-packed 
(h.c.p.) structure. The MEM nuclear-density distri- 
butions in the (110) and basal planes are shown in 
Figs. l(a) and (b), respectively. The contours are on a 
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logarithmic scale. The nuclear density is concen- 
trated in a small region around the presumed atomic 
sites, with peak maxima of 144.772 x 10-14m A -3 
(187.044 neutrons A-3). In the interatomic region, 
the nuclear density is very close to zero (0.034 neu- 
trons A-3). These very reasonable features for a 
nuclear-density distribution contrast with the 
electron-density distribution, as shown in § 7. 

The ratio c/a = 1.568 for beryllium metal is 
smaller than the expected value of c/a = 1.633 for the 
h.c.p, hard-sphere model. Concordantly, previous 
studies (Larsen, Lehmann & Merisalo, 1980; Larsen, 
Brown, Lehmann, & Merisalo, 1982) found mean- 
square amplitudes ( u Z ) < ( u Z ) = ( u 2 ) .  In the har- 
monic approximation, this corresponds to oblate 
thermal ellipsoids, which give elliptical circular 
shapes for the thermal smearing function. Obviously, 
the MEM nuclear densities shown in Fig. 1 are not 
simple elliptical shapes, indicating the existence of 
anharmonic vibrations. 

In the Fig. l(b) basal plane, a triangular feature is 
clearly visible. For the harmonic model, nuclear- 
density contours should be circular in this plane. 
According to the OPP model, a third-order 

1"001] 

1 

-,,.. 

S @ 
~O .T  

*T 

, T  

*T O 

J 
@-,.., 

:- [1101 (a) 1A 

(b) 

Fig. I. The MEM nuclear-density distributions of beryllium at 
room temperature. (a) and (b) are the (110) and basal planes, 
respectively. The contour lines are on a logarithmic scale at 0.05 
x2.0" (n=0, 1, 2 .... ) (x 10-~4mA-3). The tetrahedral and 
octahedral holes are marked T and O, respectively. 

anharmonic term will distort the effective potential 
antisymmetrically in the basal plane of the h.c.p. 
lattice, deforming the equipotential contours into a 
triangular shape. It is therefore reasonable to inter- 
pret the characteristic triangular feature of the M EM 
nuclear density in the h.c.p, basal plane shown in 
Fig. l(b) as being caused by third-order anharmonic 
vibrations. Indeed, third-order anharmonicity for 
beryllium was observed in previous studies (Meri- 
salo, J~irvinen & Kurittu, 1978; Larsen, Lehmann & 
Merisalo, 1980; Larsen, Brown, Lehmann & Meri- 
salo, 1982). 

The atomic thermal motion can be described 
qualitatively by plots of equipotential contours in a 
set of planes through the atom. In a study of 
anharmonic motion in another h.c.p, structure, zinc 
(Merisalo & Larsen, 1977), it was shown that fourth- 
order anharmonic terms in the OPP model may 
deform the equipotential contours from an elliptical 
shape to one with squarish shoulders in the (100) and 
(110) planes. The beryllium MEM nuclear density in 
Fig. l(a) shows significant deviations from the har- 
monic elliptical shape. By analogy with zinc, the 
squarish-shoulders feature may be interpreted as 
resulting from significant quartic anharmonic terms 
in the OPP function. 

In the conventional approach based on least- 
squares refinement of structure factors, it is very 
difficult to prove the existence of a quartic anhar- 
monic term because there is usually very high corre- 
lation between second- and fourth-order parameters. 
So far, definitive evidence for fourth-order anharmo- 
nicity in beryllium has not been obtained. The 
squarish shoulders in Fig. l(a) strongly suggest 
fourth-order anharmonic vibrations. By further 
analysis of the MEM nuclear-density distribution, it 
should be possible to determine potential param- 
eters, which describe the thermal atomic dis- 
placements of the point nuclei. 

4. Nuclear density by the OPP model 

The MEM nuclear density gives a picture of the 
atomic thermal displacements unimpaired by elec- 
tronic features like chemical bonding or lone-pair 
electron distributions. The MEM nuclear density will 
therefore be regarded as the thermal smearing func- 
tion, also known as the probability density function 
(p.d.f.), for the nuclei. For an assembly of simple 
harmonic oscillators, the p.d.f, is a Gaussian func- 
tion of the displacement, (u2). As indicated by Willis 
& Pryor (1975), the root-mean-square atomic dis- 
placement in the harmonic case can be derived 
directly as the half-width at half-peak-height of the 
p.d.f. 

The present case of beryllium is obviously not 
simple harmonic. It is possible to evaluate the 
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potential parameters for an anharmonic description 
of the atomic themal displacements of the point 
nuclei. In this study, an effective one-particle 
potential, is assumed to describe the vibrations of 
beryllium in real space. Potential parameters are 
determined by three-dimensional function fitting of 
the OPP model to the real-space MEM nuclear 
densities. 

As mentioned in § 3, thermal-motion effects up to 
fourth-order anharmonic vibration are found in the 
MEM nuclear density of beryllium. Therefore, the 
OPP formalism for the h.c.p, structure is developed 
up to the fourth-order anharmonic terms, in con- 
sideration of the 6m2 site symmetry of beryllium. 
The OPP can be written 

V(Ul,U2,U3) = /31(u  2 -Jr-//22) -1-/32 u2 harmonic term 

+ y(u]  - 3ulu~) cubic term 

+ (a4o/8)(3u 4 + 3u 4 + 8u43 + 6u]u~ 

- 24u]u~- 24u~u~) 

+ (/320/2)(- u 4 - u 4 + 2u43 - 2uZu 2 

- 2 u ] u  2 - 2 u ~ u ~ )  

+ yoo(U 4 + u 4 + u43 + 2u]u~ + 2u]u 2 

+ 2u2u~), (1) 

where ul, u2 and u3 are unit vectors along (210), (010) 
and (001), fli and f12 are the harmonic force con- 
stants, y is the third-order anharmonic parameter 
(Kurki-Suonio, Merisalo & Peltonen, 1979; Kara & 
Merisalo, 1982), a40 and f120 are the fourth-order 
anisotropic parameters and Yo0 is the fourth-order 
isotropic anharmonic parameter (Merisalo & Larsen, 
1977, 1979). With the assumption of the classical 
high-temperature approximation, the p.d.f., 
P(Ul,U2,U3), is calculated from the potential, 
V(Ul,U2,U3), through the Boltzmann distribution 
function 

enables approximations in the calculation of the 
temperature factor to be avoided. Potential param- 
eters in real space are determined by three- 
dimensional least-squares fitting of the MEM nuclear 
density using (2). 

5. The results o f  fitting the M E M  map 

In order to appreciate the importance of the different 
contributions to the potential for describing the ther- 
mal motion in beryllium, the least-squares fitting was 
carried out step-wise with an increasing number of 
terns in the potential expression. In Figs. 2(a) and 
(b), close-ups of the observed MEM nuclear density 
at the atomic position are shown for (001) and (100) 
sections, respectively. 

As a first stage, refinements were made applying 
only the harmonic terms, /3~ and/32. The reliability 
factor is 

R(p 2) = ~LOMEM(U)-  flcaI(U)]2/E[2OMEM(U)] 2, 

where PMEM(U) is the MEM density and Peal(U) is the 
nuclear density calculated from the OPP model. The 
summation is over all pixels of the MEM calculation. 
In the harmonic model, the R factor was 3.5%. The 
resulting parameters fl~ and f12 were 2.6926 (6) and 
2.872 (1) eV A-  2, respectively. Corresponding calcu- 
lated nuclear densities in the (001) and (100) sections 
are shown in Figs. 2(c) and (d), respectively. The 
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MEM Density 

P(Ul,U2,U3) = N exp [ -  V(Ul,U2,U3)/kBT], (2) 

where N is the normalization factor. This function 
will be fitted to the MEM nuclear densities. 

In the conventional method of determining ther- 
mal parameters, a temperature-factor expression is 
calculated by a Fourier transformation of the p.d.f. 
It is then included in the structure-factor expression 
used in refining the potential parameters by least- 
squares methods based on the observed structure 
factors. In this treatment, an approximation in 
the expansion of the power series of the term 
exp[-V(ul,u2,u3)/kBT] is usually introduced in the 
process of calculating the Fourier transformation. 
The MEM analysis using neutron-diffraction struc- 
ture factors gives the nuclear p.d.f, in real space. The 
present procedure of thermal-parameter refinement 

O O 
(c) (d) 

Harmonic Model 

0 0  
(e) ( f )  

Up to Cubic Term 

Fig. 2. Close-ups of the MEM nuclear densities and calculated 
nuclear densities of sections (001) and (100). Contours are as in 
Fig. 1. 
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harmonic approximation gives a perfect circular 
shape in the basal plane and a slightly elliptical shape 
for the nuclear density in the (100) plane, which is a 
rather poor approximation to the MEM nuclear 
density. 

In the second stage, the third-order parameter 7 
was refined, together with the harmonic parameters. 
The calculated nuclear densities are shown in Figs. 
2(e) and ( f )  and show good agreement with the 
MEM nuclear density for the triangular feature in 
the basal plane. The reliability factor dropped to 
3.4%. However, the (100) density still shows an 
elliptical shape, which is a poor approximation to the 
MEM density. This implies that the model for the 
thermal atomic vibration should include fourth-order 
parameters. 

There are three kinds of fourth-order anharmonic 
parameters. The a4o and /32o terms describe aniso- 
tropic anharmonic vibrations and Y0o describes iso- 
tropic anharmonic vibrations. To reveal which of 
these parameters are most important for describing 
the MEM nuclear density obtained and to relate 
them to structural features, individual fourth-order 
parameters were introduced in turn with the har- 
monic and third-order anharmonic parameters into 
the least-squares refinement. Parameters and R fac- 
tors for these refinements are listed in Table 2. 
Model (1) with the a4o fourth-order parameter gives 
little improvement to the R factor while for model 
(2), as well as for model (3), the R value drops by 
1%. 

The effect of the individual fourth-order anhar- 
monic term of the potential can be visualized by 
drawing the calculated nuclear densities of models 
(1), (2) and (3). Calculated nuclear densities in the 
basal plane are almost identical for each model. 
Those of the (100) plane, on the other hand, show 
small differences, depicted in Figs. 3(a), (b) and (c) 
for models (1), (2) and (3), respectively. Judging from 
the R values of Table 2 and the appearance of the 
(100) section of the calculated map, the second 
parameter, /320, has the greatest significance for 
creating the squarish shoulders. The isotropic fourth- 
order anharmonic parameter 3oo is also very impor- 
tant for a good fit to the (100) MEM nuclear density. 

Finally, all thermal parameters, including the three 
fourth-order terms, were refined in the least-squares 
process. The calculated nuclear density of (100) with 
these parameters, shown in Fig. 3(d), gives only a 
marginally improved fit relative to models (2) and 
(3). The corresponding correlation matrix in Table 3 
shows rather high correlation between the fourth- 
order parameters. On the basis of the significant 
improvements in R factors, it can be stated that 
fourth- as well as third-order anharmonic terms are 
essential for the description of the atomic thermal 
motion in beryllium metal. 

Table 2. Potential parameters for beryllium with the 
potential models (1), (2) and (3) and the final model, 
which includes all second-, third- and fourth-order 

parameters 

The last column lists parameters of a previous analysis based on 
least-squares refinement of structure factors (Larsen et el., 1982) 

Final Previous 
Model (1) Model (2) Model (3) model model 

/3. (eVA 2) 2.6922 (6) 2.7902 (5) 2.7556 (4) 2.7755 (4) 2.80 (3) 
/3, (ev ,~ 2) 2.875 (1) 2.7763 (8) 2.9334 (7) 2.892 (1) 3.26 (4) 
y(ev• .1) _ 0.442 (6) -0.340(5) -0.341(4) -0.306(4) -I.0(3) 
a4o (eVA 4) 3.73 (7) 0 0 - 1.02 (2) 
/320 (eV/~ 4) 0 9.89 (1) 0 2.95 (5) 
Yoo(eVA 4) 0 0 -3.926(3) -3.28(2) 
R{p 2} 0.033 0.024 0.022 0.021 

For comparison, room-temperature values of the 
OPP parameters determined in the study of the 
temperature dependence of thermal vibrations in be- 
ryllium (Larsen, Brown, Lehmann & Merisalo, 1982) 
are also given in Table 2. In that study, only param- 
eters up to third order were used. The /3~ values 
agree but the /32 values differ; however, the corre- 
lation matrix shows that the /32 parameter is cor- 
related rather strongly with the fourth-order param- 
eters/32o and Y00, which may conceivably explain the 
difference. 

The problem of high correlation among the ther- 
mal parameters can be circumvented by studying 
integral parameters characterizing the thermal 

[OOl ] 

@ 
(a) 

(b) 

@ 
(c) 

@ 
(d) 

Model 1 

Model 2 

Model 3 

Final model 

[01 O] 

Fig. 3. The (100) nuclear densities calculated with the parameters 
of models (1), (2) and (3) and the final model in Table 2. 
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Table 3. Least-squares correlation matrix for the fit of 
the final model with all second-, third- and fourth- 

order parameters 

Second  o rde r  Th i rd  o r d e r  Quar t i c  o rde r  

~, ~2 y a4o ~2o Yo0 
1.0000 - 0.54837 0.16259 -0.03730 0.46060 0.33021 

1.00000 - 0.03946 - 0.34955 -0.74950 - 0.73023 
1.00000 -0.14385 0.12761 - 0.07364 

1.00000 0.41276 0.65464 
1.00000 0.93727 

1.00000 

smearing function, rather than the harmonic and 
anharmonic parameters separately. For example, the 
mean-square amplitudes of the atomic vibrations in 
the principal directions at the high-temperature limit 
can be evaluated as an ensemble average by the 
Boltzmann distribution function, according to (3), 
where p = x, z: 

(u 2) = Y.{u~ exp [ -  V(u)/kBT]}/~ exp [ -  V(u)/kBT] 

= 2 {u~LoMEM(u) /N] } /~LoMEM(u) /N] .  (3) 
The calculated values are listed in Table 4 next to 

results obtained by previous conventional least- 
squares refinement based on structure factors 
(Larsen, Lehmann & Merisalo, 1980). The present 
values are slightly smaller than those of the previous 
analyses, perhaps because fourth-order anharmonic 
effects are now specifically accounted for. 

It should also be noted that the relative magni- 
tudes of the fourth-order parameters are the same as 
those determined in the study of anharmonicity of 
lattice vibrations in zinc by neutron diffraction 
(Merisalo & Larsen, 1979). We are undertaking 
MEM analyses of single-crystal neutron diffraction 
data for other h.c.p, metals of different c/a ratios, 
notably magnesium and zinc, in order to test if this 
pattern is generally valid. 

The significant third-order parameter 3/is consist- 
ent with the Larsen, Lehmann & Merisalo (1980) 
result and similar to that for other h.c.p, metals, 
magnesium (J/irvinen, Soininen & Merisalo, 1987) 
and zinc (Merisalo, J/irvinen & Kurittu, 1978; Meri- 
salo & Larsen, 1979). It implies axial anisotropy of 
vibrations relative to the hexagonal axis. The beryl- 
lium MEM neutron-density distribution indicates 
excess of thermal movement along the (110) direc- 
tions in the basal plane, which means that the a33 
term is negative. The existence of the very sizable 
fourth-order parameter /320 shows that the anhar- 
monic softening of the OPP is directed against the 
octahedral vacancies in the h.c.p, structure. 

6. Standard deviations 

The standard deviations given in Table 2 for the 
present calculations are an unrealistically small 

Table 4. Comparison of mean-square amplitudes of 
vibration determined from the MEM nuclear density 

and the previous result 

M E M  Prev ious  s tudy  
nuc lea r  dens i ty  (Larsen  et al., 1980) 

(u~) (A?) 0.00564 0.00594 (3) 
(u~ (A 2) 0.00494 0.00537 (3) 

measure of the total error in the parameter. They are 
solely measures of how well the least-squares pro- 
cedure has fitted the model in question to the MEM 
density distribution. No account is given of the 
added uncertainty of the parameters, which must 
reside in the reliability of the MEM density distribu- 
tion obtained. Presumably, the MEM derives the 
most likely density distribution from the experi- 
mental observations. However, no straightforward 
measure of precision of the solution obtained is 
offered at the present stage of development of the 
technique. The results of the previous studies of the 
beryllium neutron diffraction data based on least- 
squares refinements of the structure factors indicate 
that the parameter values given here are probably 
reliable to the second digit after the decimal point for 
the harmonic parameters, fl~ and f12, and to only the 
first digit after the decimal point for the anharmonic 
parameters. 

7. Comparison with the MEM electron density 

Neutron and X-ray diffraction studies frequently 
give complementary information. For example, the 
influence of atomic thermal motion on the X-ray 
structure factors can be more reliably separated from 
electronic features when the nuclear positions and 
their thermal motion have been determined indepen- 
dently from an analysis of neutron diffraction data. 

For beryllium, the MEM electron-density distribu- 
tion based oll X-ray powder data was given by 
Takata, Kubota & Sakata (1993). 19 reflections with 
sin0/,~ < 1.41 A.-~ were available. In order to have 
the MEM electron-density distribution with resolu- 
tion similar to Fig. 1, the MEM electron-density map 
has been calculated from the single-crystal X-ray 
data of Larsen & Hansen (1984) and is shown in Fig. 
4. The planes are the same as in Fig. 1. The contours 
are drawn on a linear scale only for the lower density 
region, in order to show better the modulation of the 
electron-density distribution in the interatomic 
region. The core electrons around atomic positions 
stand out like the MEM nuclear density in Fig. 1 but 
the electron-density distribution is more diffuse and 
structured in the interatomic region. 

There is a local maximum of electron density in 
the bipyramidal space of two neighboring tetrahedral 
voids. This must be a purely electronic feature 
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characteristic of the bonding in beryllium metal, 
since the MEM nuclear density shown in Fig. 1 has 
no density outside the atomic positions. Comparison 
of the MEM nuclear and electron densities indicates 
that the MEM nuclear-density peak is localized more 
sharply around the atomic site than that of the 
MEM electron density. 

The electron-density distribution has a slightly 
triangular shape in the basal plane. The direction of 
the distortion is opposite to that observed in the 
MEM nuclear density. Therefore, this deformation 
in the electron density must be interpreted as an 
effect of the valence-electron charge density. Similar 
oppositely directed deformations in nuclear- and 
electron-density distributions caused by anharmonic 
motion and bonding-electron redistribution have 
also been mentioned for the diamond structure by 
Willis & Pryor (1975). The asymmetric surrounding 
of an atom, which sees a nearest neighbor in one 
direction and a hole in the structure in the opposite 
direction, causes anharmonic motion of the nucleus 
such that the atom spends more time towards the 
hole than towards the bond. Thus, the tetrahedral 

ro01] .~7-~ ~,. / i : :. ' ,  ~:,,~-~ :;,:.:~::..~ 

[1 10] (a) 1 

(b) 

Fig. 4. The MEM electron-density distributions of  beryllium at 
room temperature based on X-ray single-crystal diffraction 
data. (a) and (b) are the (110) and basal planes, respectively. 

3 The contours are from 0.0 to 2.0 at intervals of 0.05 e A-  on a 
linear scale. The tetrahedral and octahedral holes are marked T 
and O, respectively. 

anharmonic deformation is oppositely directed to the 
tetrahedral bonding distribution. 

For beryllium metal in the h.c.p, structure, the 
nuclear-density distribution is deformed towards the 
octahedral voids; Fig. 4 shows that the electron- 
density distribution is deformed in the basal plane 
towards the bipyramidal space around the tetra- 
hedral holes. 

There is a local maximum in the electron density 
centered between three neighboring atoms in the 
basal plane of the h.c.p, structure. We are presently 
carrying out a topological analysis of the MEM 
electron density in beryllium according to Bader's 
(1990) scheme. The topological analysis charac- 
terized this point as a non-nuclear attractor. Details 
of the MEM electron-density-distribution study will 
be reported in a forthcoming paper. 

8. Concluding remarks 

This study shows that the MEM based on neutron 
diffraction data can reveal even small anharmonic 
thermal effects in a crystal. Direct fitting of the 
MEM nuclear density by the OPP model is a power- 
ful new method that can determine a precise value 
for the force constants of the harmonic and 
anharmonic terms of the potential. This method has 
the great advantage of making possible a direct 
judgment of the appropriate model for describing the 
thermal motion in real space. The MEM analysis 
gives rich information about the nature of anhar- 
monic motion in beryllium without involving any 
structural model for the atomic thermal motion. 
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Asymmetric Bragg Cases of X-ray Diffraction 
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Abstract 
Double-crystal rocking Curves from a highly perfect 
silicon crystal were taken in extremely asymmetric 
schemes, in which the glancing angles of the incident 
X-rays were very close to the critical angle of total 
external reflection. The experimental rocking curves 
were compared with theoretical calculations based 
both on an ordinary dynamical theory of diffraction 
and also on an extended dynamical theory, which 
uses a more exact solution of the fundamental equa- 
tion of the dynamical theory and takes the effect of 
specular reflection into account. It is demonstrated 
from such a comparison that, in the case of 
extremely asymmetric diffraction, the ordinary treat- 
ment of the dynamical theory of diffraction is not 
valid; in contrast, the extended theory explains the 
rocking curve very well. 

1. lntrodution 
Extremely asymmetric Bragg-case diffraction with an 
incident-beam glancing angle close to the critical 
angle of total reflection has been a subject of great 
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interest in applications such as the study of surfaces 
(Kitano, Ishikawa, Matsui, Akimoto, Mizuki & 
Kawase, 1987; Kitano, Kimura & Ishikawa, 1992; 
Kimura, Mizuki, Matsui & Ishikawa, 1992) and 
interfaces (Hasegawa, Akimoto, Tsukiji, Kubota & 
Ishitani, 1993). Under these conditions, however, 
ordinary treatments of the dynamical theory of dif- 
fraction (Zachariasen, 1945) are not valid, since the 
effects of specular reflection can no longer be 
neglected. Consequently, several theoretical studies 
(Kishino & Kohra, 1971;  Bedyfiska, 1973; 
Rustichelli, 1975;  Zeilinger & Beatty, 1983; 
Afanas'ev & Melikyan, 1990) have been reported on 
diffraction phenomena in such an extremely asym- 
metric case. According to the work of these authors: 
(1) the angular deviation from Bragg's law, AOo, 
approaches the critical angle of total reflection, 0,., as 
0B - a goes to zero, where 0B is the Bragg angle and 
a is the angle between the crystal surface and diffrac- 
ting planes; (2) the full width at half-maximum 
(FWHM) of the rocking curve has a maximum value 
at a small glancing angle and cannot be larger than 
this maximum value as 08 - a becomes even smaller. 
The ordinary treatment of the dynamical theory, 
however, shows that both AOo and the FWHM 
diverge. 
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